Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-Bis(3-chlorophenyl)succinamide

B. S. Saraswathi, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and B. Thimme Gowda ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574199 , Mangalore, India, and ${ }^{\mathbf{b}}$ Institute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
Correspondence e-mail: gowdabt@yahoo.com

Received 16 March 2011; accepted 20 March 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.037 ; w R$ factor $=0.105 ;$ data-to-parameter ratio $=14.9$.

The complete molecule of the title compound, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2}$ $\mathrm{N}_{2} \mathrm{O}_{2}$, is generated by crystallographic inversion symmetry. The dihedral angle between the benzene ring and the $\mathrm{NH}-$ $\mathrm{C}(\mathrm{O})-\mathrm{C}$ fragment is $32.8(1)^{\circ}$. In the crystal, the molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into [100] chains.

Related literature

For our study of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2000); Saraswathi et al. (2011), of N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and of N-(substitutedphenyl)-p-substituted-benzenesulfonamides, see: Gowda et al. (2005).

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=337.19$
Monoclinic, $P 2_{1} / c$
$a=8.3412$ (8) A
$b=9.6501$ (9) \AA
$c=9.5485$ (9) \AA
$\beta=91.319(9)^{\circ}$
$V=768.39(13) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.43 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.40 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection
Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction: multi-scan (CrysAlis RED; Oxford

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.105$
$S=1.07$
1535 reflections
103 parameters
1 restraint

Diffraction, 2009)
$T_{\text {min }}=0.847, T_{\text {max }}=0.919$
2574 measured reflections
1535 independent reflections
1253 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.009$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.25 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.81(2)$	$2.10(2)$	$2.8946(19)$	$166(2)$

Symmetry code: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2100).

References

Gowda, B. T., Foro, S. \& Fuess, H. (2007). Acta Cryst. E63, o2597.
Gowda, B. T., Paulus, H. \& Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791800.

Gowda, B. T., Shetty, M. \& Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
Saraswathi, B. S., Foro, S. \& Gowda, B. T. (2011). Acta Cryst. E67, 0607.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

N, N^{\prime}-Bis(3-chlorophenyl)succinamide

B. S. Saraswathi, S. Foro and B. T. Gowda

Comment

The amide and sulfonamide moieties are important constituents of many biologically significant compounds. As a part of studying the substituent effects on the structures of this class of compounds(Gowda et al., 2000, 2005, 2007; Saraswathi et al., 2011), in the present work, the structure of N, N-bis(3-chlorophenyl)-succinamide (I) has been determined (Fig.1). The conformations of $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ bonds in the $\mathrm{C}-\mathrm{NH}-\mathrm{C}(\mathrm{O})-\mathrm{C}$ segments are anti to each other and the amide O atoms are anti to the H atoms attached to the adjacent C atoms. Further, conformations of the $\mathrm{N}-\mathrm{H}$ bonds in the amide fragments are anti to the meta-chloro groups in the adjacent benzene rings, similar to the anti conformations observed with respect to the ortho-methyl groups in N, N-bis(2-methylphenyl)- succinamide (II) (Saraswathi et al., 2011). The dihedral angle between the benzene ring and the $\mathrm{NH}-\mathrm{C}(\mathrm{O})-\mathrm{CH}_{2}$ segment in the two halves of the molecule is $32.8(1)^{\circ}$, compared to the value of 62.1 (2) ${ }^{\circ}$ in (II).

Further, $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$ and $\mathrm{C} 1 \mathrm{a}-\mathrm{N} 1 \mathrm{a}-\mathrm{C} 7 \mathrm{a}-\mathrm{C} 8 \mathrm{a}$ segments in (I) are nearly linear and so also the $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$ and $\mathrm{C} 1 \mathrm{a}-\mathrm{N} 1 \mathrm{a}-\mathrm{C} 7 \mathrm{a}-\mathrm{O} 1 \mathrm{a}$ segments, similar to those observed in (II). The torsion angles of $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$ and $\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$ are $-35.0(3)^{\circ}$ and $147.5(2)^{\circ}$, in contrast to the values of $-64.0(4)^{\circ}$ and $117.6(3)^{\circ}$ in (II).

The packing of molecules in the crystal linked by of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

Succinic anhydride $(0.01 \mathrm{~mol})$ in toluene $(25 \mathrm{ml})$ was treated drop wise with 3-chloroaniline $(0.01 \mathrm{~mol})$ also in toluene $(20 \mathrm{ml})$ with constant stirring. The resulting mixture was stirred for one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove unreacted 3-chloroaniline. The resultant solid N-(3-chlorophenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. The compound was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared and NMR spectra.

The N-(3-chlorophenyl)succinamic acid obtained was then treated with phosphorous oxychloride and excess of 3chloroaniline at room temperature with constant stirring. The resultant mixture was stirred for 4 h , kept aside for additional 6 h for completion of the reaction and poured slowly into crushed ice with constant stirring. It was kept aside for a day. The resultant solid, N, N-bis(3-chlorophenyl)- succinamide was filtered under suction, washed thoroughly with water, dilute sodium hydroxide solution and finally with water. It was recrystallized to constant melting point from a mixture of acetone and chloroform. The purity of the compound was checked by elemental analysis, and characterized by its infrared and NMR spectra.

supplementary materials

Rod like colorless single crystals used in the X-ray diffraction studies were were grown in a mixture of acetone and chloroform at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to the distance $\mathrm{N}-\mathrm{H}=0.86$ (2) \AA. The other H atoms were positioned with idealized geometry using a riding model with the aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and the methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the $U_{\text {eq }}$ of the parent atom).

Figures

N, N^{1}-Bis(3-chlorophenyl)butanediamide

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=337.19$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.3412$ (8) \AA
$b=9.6501$ (9) \AA
$c=9.5485(9) \AA$
$\beta=91.319(9)^{\circ}$
$V=768.39(13) \AA^{3}$
$Z=2$
$F(000)=348$
$D_{\mathrm{x}}=1.457 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1492 reflections
$\theta=3.0-28.0^{\circ}$
$\mu=0.43 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Rod, colourless
$0.40 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Oxford Diffraction Xcalibur (TM) Single Crystal X-	
ray Diffractometer with Sapphire CCD Detector.	
Radiation source: fine-focus sealed tube	1253 reflections with $I>2 \sigma(I)$
graphite	$R_{\operatorname{int}}=0.009$
Rotation method data acquisition using ω scans.	$\theta_{\max }=26.4^{\circ}, \theta_{\min }=3.0^{\circ}$

Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
$T_{\text {min }}=0.847, T_{\text {max }}=0.919$
2574 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.105$
$S=1.07$

1535 reflections
103 parameters
1 restraint
$h=-10 \rightarrow 4$
$k=-12 \rightarrow 11$
$l=-10 \rightarrow 11$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0482 P)^{2}+0.3792 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\max }=0.25$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.34$ e \AA^{-3}

Special details

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.01685(8)$	$0.54218(6)$	$0.32765(6)$	$0.0639(2)$
O1	$0.4067(2)$	$0.17690(15)$	$0.16810(13)$	$0.0521(4)$
N1	$0.3460(2)$	$0.28337(17)$	$-0.03736(15)$	$0.0395(4)$
H1N	$0.362(3)$	$0.279(2)$	$-0.1207(17)$	0.047^{*}
C1	$0.2803(2)$	$0.40783(19)$	$0.01300(18)$	$0.0344(4)$
C2	$0.1918(2)$	$0.4127(2)$	$0.13434(19)$	$0.0382(4)$
H2	0.1761	0.3332	0.1873	0.046^{*}
C3	$0.1276(2)$	$0.5375(2)$	$0.1747(2)$	$0.0416(5)$
C4	$0.1467(3)$	$0.6572(2)$	$0.0987(2)$	$0.0508(5)$
H4	0.1024	0.7404	0.1281	0.061^{*}
C5	$0.2335(3)$	$0.6502(2)$	$-0.0223(2)$	$0.0520(5)$
H5	0.2469	0.7298	-0.0757	0.062^{*}

C6	$0.3006(2)$	$0.5279(2)$	$-0.0655(2)$	$0.0429(5)$
H6	0.3595	0.5253	-0.1470	0.052^{*}
C7	$0.4051(2)$	$0.17778(18)$	$0.04063(18)$	$0.0363(4)$
C8	$0.4738(3)$	$0.0598(2)$	$-0.04393(19)$	$0.0481(5)$
H8A	0.3934	0.0286	-0.1118	0.058^{*}
H8B	0.5648	0.0938	-0.0953	0.058^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	$0.0725(4)$	$0.0602(4)$	$0.0602(4)$	$0.0010(3)$	$0.0256(3)$	$-0.0182(3)$
O1	$0.0881(12)$	$0.0448(8)$	$0.0235(7)$	$0.0190(8)$	$0.0080(6)$	$0.0013(6)$
N1	$0.0599(10)$	$0.0367(9)$	$0.0220(7)$	$0.0081(8)$	$0.0057(7)$	$0.0004(6)$
C1	$0.0402(9)$	$0.0326(9)$	$0.0304(9)$	$0.0015(8)$	$-0.0024(7)$	$-0.0012(7)$
C2	$0.0457(11)$	$0.0337(10)$	$0.0353(9)$	$-0.0009(8)$	$0.0016(8)$	$-0.0019(7)$
C3	$0.0413(10)$	$0.0433(11)$	$0.0402(10)$	$0.0002(9)$	$0.0023(8)$	$-0.0088(8)$
C4	$0.0525(12)$	$0.0367(11)$	$0.0631(14)$	$0.0083(9)$	$0.0000(10)$	$-0.0066(10)$
C5	$0.0604(13)$	$0.0362(11)$	$0.0593(13)$	$0.0035(10)$	$-0.0001(10)$	$0.0108(10)$
C6	$0.0488(11)$	$0.0425(12)$	$0.0376(10)$	$0.0030(9)$	$0.0027(8)$	$0.0067(8)$
C7	$0.0507(11)$	$0.0329(9)$	$0.0254(8)$	$0.0020(8)$	$0.0054(7)$	$-0.0010(7)$
C8	$0.0784(15)$	$0.0393(11)$	$0.0266(9)$	$0.0136(10)$	$0.0052(9)$	$-0.0022(8)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 11-\mathrm{C} 3$	$1.747(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.217(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.349(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.409(2)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.811(16)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.389(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.393(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.377(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.375(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$126.55(15)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$116.0(16)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$116.8(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$119.64(18)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$122.13(16)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$118.19(17)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.72(18)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.6
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$122.47(19)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Cl} 1$	$119.31(16)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 1$	$118.22(16)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.03(19)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	121.0

C4-C5	1.380 (3)
C4-H4	0.9300
C5-C6	1.373 (3)
C5-H5	0.9300
C6-H6	0.9300
C7-C8	1.516 (3)
C8-C8 ${ }^{\text {i }}$	1.487 (4)
C8-H8A	0.9700
C8-H8B	0.9700
C6-C5-C4	121.3 (2)
C6-C5-H5	119.4
C4-C5-H5	119.4
C5-C6-C1	119.87 (19)
C5-C6-H6	120.1
C1-C6-H6	120.1
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	123.58 (16)
O1-C7-C8	122.13 (17)
N1-C7-C8	114.28 (15)
C8 ${ }^{\mathrm{i}}-\mathrm{C} 8-\mathrm{C} 7$	113.09 (19)
C8 ${ }^{\text {i }}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	109.0
C7-C8-H8A	109.0
C8i ${ }^{\text {i }}$ C8- 88 B	109.0
C7-C8-H8B	109.0

sup-4

supplementary materials

$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	121.0
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-35.0(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$147.5(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-0.7(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.16(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.6(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 1$	$-179.87(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.1(3)$
$\mathrm{Cl} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-179.44(17)$

$\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	107.8
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.7(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.5(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.2(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$177.74(19)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$	$1.0(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$-177.66(19)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C}-\mathrm{C} 8^{\mathrm{i}}$	$5.9(4)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8^{\mathrm{i}}$	$-175.4(2)$

Symmetry codes: (i) $-x+1,-y,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.81(2)$	$2.10(2)$	$2.8946(19)$	$166(2)$

Symmetry codes: (ii) $x,-y+1 / 2, z-1 / 2$.

supplementary materials

Fig. 1

Fig. 2

